If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+9x^2=0
a = 9; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·9·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*9}=\frac{-14}{18} =-7/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*9}=\frac{0}{18} =0 $
| 2x²+2x-24=0 | | 3x^2=((81/5)x)-6 | | 3p-92=p | | 7x^+5x=0 | | (X-2)(3x-2)=8 | | 5p=3p=8 | | 13y=6y | | -7x-5=-9x-12 | | 3x^2=(81/5)-6 | | 3x+0.5x=1 | | 3a-8=15 | | |x-5|=10 | | 6x^2-23x+2=0 | | -10(s+1)=-47 | | |2x-1|+|3x-4|=|5x+2| | | x2-14x+49=0 | | 6(4s+2)=132 | | 7(4s+10)=238 | | 5(2l+2)=70 | | 3(a-7)=45 | | -4a+8=20 | | 0x-7=0 | | 3^(2x-3)=9 | | 6(a+4)=43 | | 3^(2x)=9 | | (u+1)8=40 | | 20x-80=-6x+82 | | (q-10)5=20 | | 2(5-2x)=4x-6 | | 5(2x+4)=(4-x)10+24 | | 5(2x+4)-6=(4-x)•10+24 | | 6a-3a-12=18 |